网信彩票客户端_网信彩票软件
网信彩票骗局2023-01-31 16:05

网信彩票客户端

聚焦人工智能技术前沿与治理 中外专家学者国际论坛建言献策******

  中新网北京12月5日电 (记者 孙自法)2021人工智能合作与治理国际论坛“人工智能技术前沿与治理”主论坛,12月5日在清华大学以线上线下结合方式举行,中外人工智能(AI)领域专家学者聚焦人工智能技术前沿与治理这一主题,发表主旨演讲建言献策,并深入研讨交流。

  美国国家科学院院士、美国艺术与科学院院士、约翰·贝茨·克拉克奖得主、斯坦福大学商学院技术经济学教授、以人为本人工智能研究所副所长苏珊·阿西(Susan Athey)认为,大学在指导人工智能创新方面可以发挥优先引导的关键作用。由于私营部门的技术人员缺乏伦理、哲学方面的训练,难以开发出具有可解释性的算法框架,深化这类研究能够在人工智能治理的问题识别、建立开发实践框架、提供指引等方面发挥重要作用。此外,由于数据可以带来巨大的规模效应,当前“软件即服务”的平台经济模式已非常普及。人工智能和数据需求可能带来“伪”市场集中,因此,未来对“机器换人”的预测非常具有挑战性,需要重新关注和思考人工智能如何用于应对老龄化等公共管理问题,使基于人工智能的公共服务变得更加高效。

  国际人工智能协会前主席、清华大学人工智能国际治理研究院学术委员约兰达·吉尔(Yolanda Gil)指出,由于人类对智能机制认知不足、智能行为本身的复杂性、观测手段的有限性以及个体知识、职业、信仰、文化背景等的差异性,导致当前人工智能研究中面临着一系列挑战,因此,需要加强人工智能基础研究工作,这需要跨领域、跨学科的共同努力。当前,理解人工智能机理和构建人工智能世界模型是人工智能研究面临的两大挑战。一方面,理解人工智能机理需要构架“感知-思考-行动”的智能模型,加强对大脑思维机理的理解,建议借鉴神经科学研究联合体的有益经验,建立全球性的人工智能研究数据库,形成全球共享的研究社区。另一方面,构建人工智能世界模型则需要建立在人类经验、社会习俗、专业技能的基础上,建议建立类似于自由协作式的知识库,通过全民民众参与,推动知识在全球层面共享。

  中国科学院院士、清华大学人工智能研究院名誉院长、清华大学人工智能国际治理研究院学术委员张钹表示,由于深度学习等算法存在不可解释性,导致前两代人工智能算法存在着公平性、安全性问题和不可靠、不可信等缺陷。发展第三代人工智能关键在于发展可解释的、鲁棒的人工智能理论和方法,开发安全、可信、可靠、可扩展的人工智能技术,以“数据驱动+知识驱动”构建支持可解释的人工智能算法的深度学习平台,赋能人工智能安全与防御优化。从数据中真正获取智能要靠知识的帮助与引导,并需要政策法规对数据使用的正确规范,充分利用知识、数据、算法和算力四个要素结合,推动人工智能的创新发展。

  中国工程院院士、北京大学信息科学技术学院院长、鹏城实验室主任、清华大学人工智能国际治理研究院学术委员高文认为,当前人工智能发展处于新一代人工智能向强人工智能发展的关键阶段,至2030年,中国人工智能发展总体要达到世界领先水平。从战略问题看,中美欧三方在人工智能人才、研究、开发、应用、硬件、数据等方面竞争激烈,当前中国人工智能发展在战略政策、数据资源、应用场景、潜力人才方面具有优势,而在基础理论、原创算法、关键部件、国际平台、高级人才等方面还存在短板。从战术问题看,人工智能2.0需采用基于大数据的统计AI解决大规模AI应用需求,鼓励各种可能的强人工智能探索,“可解释机器学习+推理”和“仿生系统+AI大算力”是可能的技术路线图;在安全问题层面,强人工智能的安全风险主要来源于模型的不可解释性、算法和硬件的不可靠性和自主意识的不可控性,人工智能2.0应采用DPI与“防水堡技术”解决数据安全与隐私保护,重视探索人工智能伦理问题,并基于“理论-技术研究-应用”的阶段性采取不同的风险防范策略。

  美国国家工程院外籍院士、英国皇家工程院外籍院士、清华大学高等研究院双聘教授沈向洋表示,AI已经应用于生活和工作的方方面面,目前甚至在法律上也具有一定的应用,比如美国已经有很多法庭用机器学习和人工智能方法帮助判刑,包括决定刑期这样非常重要的问题。但是我们还无法理解一些AI决策的缘由。未来发展过程中我们不能只看见AI决策的“黑箱”,应该打开“黑箱”,探究和理解其中的具体内容和因果关系,我们一定要做可解释性的AI。同时,他提到负责任的AI应具备公平性、可靠性、隐私性、包容性、透明性和责任性的特点,作为新兴领域,还需要向其他领域学习,从而更好的服务于人类。

  中国工程院外籍院士、清华大学智能产业研究院院长、人工智能国际治理研究院学术委员张亚勤指出,“碳中和”是人类能源结构的又一次变革。“碳中和”既是可持续发展的必然选择,又是产业结构调整和发展的重大机遇。企业在“碳中和”背景下都面临转型增效的压力。人工智能+物联网是智联网,智联网可以赋能绿色计算,助力“碳中和”。智联网助力“碳中和”主要包括三个环节:首先,由数据驱动和人工智能优化引擎来实现智能决策。其次,多参数全链系统配置优化。最后,通过多源多维异构感知融合实现智能感知。智联网可用于能源融合、降低ICT产业的碳排放和推动新兴产业发展等。他还介绍了智联网赋能的绿色计算平台的框架,该平台包括人工智能驱动节能减排和高能效人工智能系统,应用路径包括绿色园区和工业节能。

  2021人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院承办,国际支持机构为联合国开发计划署。论坛为期两天,设有三场主论坛、一场特别论坛和七场专题论坛。“人工智能技术前沿与治理”主论坛由清华大学计算机科学与技术系教授、人工智能研究院常务副院长孙茂松主持。(完)

ChatGPT搞钱行不行******

  一系列的试探之后,AI聊天机器人ChatGPT的收费计划浮出水面。当地时间2月1日,人工智能实验室Open AI在其官网宣布将推出“ChatGPT Plus”付费订阅版本,每月收取20美元。免费了两个月,月活用户却达1亿的ChatGPT,终于踏上了自己的“赚钱路”,由此,AIGC商业化落地的探讨也陡然升温。不少人迫切地想知道,ChatGPT Plus会不会是AIGC从烧钱到赚钱的关键转折。

  免费服务仍将继续

  “新晋顶流”ChatGPT用收费计划再次搅动了AI圈的一池春水。根据Open AI的公告,订阅ChatGPT Plus服务的用户,即使在高峰时段,也可获得该聊天机器人更快速的回应,而且可以提前体验新功能和改进。

  去年11月,ChatGPT横空出世,不仅能够通过学习和理解人类的语言与用户进行对话,还能根据上下文互动,甚至能够完成撰写文案、翻译等工作。得益于这种突破性的使用体验,ChatGPT迅速蹿红。

  当地时间2月1日,瑞银发布研究报告称,截至今年1月,近期爆火的ChatGPT在推出仅两个月后,其月活跃用户估计已达1亿,成为历史上用户增长最快的消费应用。同样的成绩,海外版抖音TikTok在全球发布后,花了大约9个月的时间,Instagram则花了两年半的时间。

  但大量用户涌入的同时,也导致ChatGPT经常在流量压力之下无法提供及时的回应,此次收费版的ChatGPT Plus针对的便是这一痛点。

  据悉,付费计划将在未来几周内首先在美国推出,然后扩展到其他国家。但ChatGPT Plus的推出并不意味着取代免费版的ChatGPT,Open AI表示,将继续为ChatGPT提供免费访问。

  烧不起的模型成本

  尽管只推出了两个月,但Open AI对于ChatGPT的收费计划却已经暗示了有一阵子。早在1月初,Open AI就曾提出过专业版ChatGPT的计划,宣布“开始考虑如何使ChatGPT货币化”,并公布了一项调查。什么价格以上会无法接受?什么价格以下会觉得太便宜?诸如此类关于定价的问题皆在其中。

  有用户曾在社交媒体上提问ChatGPT是否会永久免费,对此,Open AI首席执行官Sam Altman回应称:“我们将不得不在某个时间点,以某种方式将其商业化,因为运算成本令人瞠目结舌。”Sam Altman曾透露,ChatGPT平均每次的聊天成本为“个位数美分”。

  “这类大模型训练成本非常高。”在接受北京商报记者采访时,瑞莱智慧高级产品经理张旭东表示。

  但相对训练来说,模型推理,也就是用户提交输入模型输出结果的过程,这一成本会更高。“据说ChatGPT在开放测试阶段每天要花掉200万美元的服务器费用,所以前段时间免费的公测也停止了,如何降低模型推理的消耗也是目前的一个重要研究问题。”张旭东称。

  “钱景”在哪

  长久以来,广阔的市场前景和难以盈利的现状几乎成为了AI领域难以平衡的理想和现实,对ChatGPT或者说是以ChatGPT为代表的AIGC也是一样。

  洛克资本副总裁史松坡对北京商报记者分析称,ChatGPT受到广泛认可的重要原因是引入新技术RLHF,即基于人类反馈的强化学习。在史松坡看来,ChatGPT是一个高效的信息整合助手,可以取代大量人类中初级助理的角色。

  但他同时提到,目前ChatGPT在海外英文环境中已经能胜任图画创作、音乐创作、文字整理、信息搜集综合、基础编程和金融分析,但还不能胜任高频度的人类主观决策,比如大型投资决策、政治战略决策等。

  天使投资人、知名互联网专家郭涛认为,ChatGPT在重塑众多行业或场景的同时也孕育着巨大的商机,将推动众多行业快速变革,有望在AIGC、传媒、娱乐、教育、客户服务、医疗健康、元宇宙等领域快速落地,具有万亿级市场规模。

  张旭东认为,AIGC商业化落地还需要结合应用场景,目前基于生成式大模型的商业应用案例还比较少,就以当下的技术水平看,一两年内达到很好的AGI(通用人工智能)水平还是不太现实的,所以一定需要有垂直领域的创新公司来基于OpenAI等公司的工作来寻找合适的场景落地。

  AIGC商业化,侵权与被侵权

  AIGC要想商业化,场景只是其一。伴随着ChatGPT的爆火,争议始终并行,比如AI绘画面临的版权探讨。学术界也已针对ChatGPT做出了反应,权威学术出版机构Nature规定,ChatGPT等大模型不能被列为作者。纽约市教育部门曾表示,纽约公立学校的所有设备和网络上将禁止使用ChatGPT。

  张旭东认为,目前AIGC最为成熟的应用在内容作品创作上,但从专业角度看,AIGC属于模仿创新,并不具备真正的创造力,AIGC的作品可能对一些艺术家、创作家的风格题材造成侵权;另一方面,AIGC作品也存在被他人侵权的风险。

  此外,就安全性问题而言,AIGC这种深度生成能力很可能被滥用于伪造虚假信息,比如生成一些敏感性的有害信息,甚至伪造新闻信息恶意引导社会舆论,而且这些生成式内容难以分辨追踪,大幅增加对信息治理的挑战难度。信息获取也是AIGC需要解决的问题之一。

  郭涛则提到,当前AIGC赛道尚处于孕育探索阶段,存在关键核心技术不成熟、免费素材资源较少、内容堆砌且质量参差不齐、成熟的商业应用场景较少、相关法律法规不健全及技术伦理挑战等突出问题,短期内还难以实现大规模商业化应用。

  北京商报记者 杨月涵

中国网客户端

国家重点新闻网站,9语种权威发布

网信彩票地图