网信彩票投注-网信彩票官方网站
网信彩票注册2023-01-31 16:05

AI绘画的“小秘密”都在这一篇文章里******

  有了AI,人人都可以是艺术家。AI绘画的出现,恰如瑞士艺术家保罗·克利所言:“艺术不是再现可见,而是使不可见成为可见。”经过20年左右的发展,目前基于不同类型或者模态元素的AI绘画发展情况不尽相同,发展最久的是“以图生图”,再到近期火爆的“文+图”生图。当然,也有团队已经研发出由语音生成图像的技术。

  上传一张图片,或者输入一些简单的关键词,系统就能自动生成一张卡通图像……最近一段时间,AI绘画开始在互联网社交平台走红。

  AI绘画,顾名思义就是利用人工智能进行绘画,是人工智能生成内容的典型应用场景之一。其主要原理是收集大量已有作品,通过算法对其内容和风格特征进行解析,最后再生成新的作品,所以算法是AI绘画的核心。

  当前,“凭空”生成图像的AI绘画,其实也会动辄“翻车”:也许上一秒AI通过你的照片绘出的是一张充满艺术感的二次元画像,下一秒你的宠物猫、狗则可能被画成可爱少女或肌肉猛男。

  事实上,AI绘画早已火爆全球。第一张公开展出的、由人工智能创作的绘画作品《埃德蒙·贝拉米的肖像》曾于2018年在佳士得拍卖行以43.25万美元成交,那是一张由机器学习了从14世纪到20世纪的1.5万张肖像画之后自动生成的一张肖像画作品。

  AI绘画是如何实现“凭空”生图的?除了娱乐外,AI绘画还有哪些潜在的应用前景?

  从“以图生图”到“语音生图”

  2022年,由人工智能创作的《太空歌剧院》一度火出圈。在美国科罗拉多州举办的新兴数字艺术家竞赛中,《太空歌剧院》获得“数字艺术/数字修饰照片”类别一等奖。它的构图、配色以及画面的细节堪称精致。然而,这个作品的创作者不是艺术家,而是来自美国科罗拉多州的游戏设计师。

  这位游戏设计师在一个名为“Midjourney”的AI创作工具里,先输入几个关键词,如光源、构图、氛围等,得到了100幅作品,再进行约80小时的修图修饰,最终选出3幅作品,最后把图像打印到画布上。

  通过简单交互式对话在短时间内生成的“艺术”作品,让人类艺术家展开了一场关于“AI绘画作品参赛是否属于作弊”的争论。这场声势浩大的争论也令大众直观地意识到如今的AI绘画水平已经发展到了何种程度。

  “人工智能在艺术方面的创作最早可以追溯到上个世纪末,当时的人工智能绘画技术叫作‘图像的风格化滤镜’。”中国科学院自动化研究所多模态人工智能系统全国重点实验室研究员董未名说,最初的AI绘画方法比较简单,比如一张普通的照片,通过一些图像处理的算法,把照片像素进行几何或者色彩上的变换,然后再调节不同参数,就可以模拟出类似油画或者水彩画的风格。

  经过20年左右的发展,目前基于不同类型或者模态元素的AI绘画发展情况不尽相同,发展最久的是“以图生图”,再到近期火爆的“文+图”生图。当然,也有团队已经研发出由语音生成图像的技术。

  AI绘画主要依靠三种技术模式实现

  董未名介绍,目前AI绘画主要借助图像风格迁移技术、图文预训练模型和扩散模型实现。

  “图像风格迁移技术指的是图像处理算法通过对输入的真实图像内容特征和对参考的艺术图像风格特征的提取,实现真实图像内容特征和艺术图像风格特征的融合,从而生成新的艺术图像。”董未名举例,如果将美国旧金山艺术宫的外景照片和印象派创始人莫奈绘制的作品,通过图像风格迁移技术进行融合,就能得到一张看起来像是由莫奈绘制的美国旧金山艺术宫的绘画作品。最初的AI绘画采用的正是这种技术。

  不过,在董未名看来,图像风格迁移技术大多依赖的是生成式对抗网络(GAN)算法,它最大的问题是生成的绘画作品艺术性不强,笔触和构图让人觉得与真实的绘画有差距,所以长久以来,AI绘画一直“籍籍无名”。

  当图像风格迁移技术还在挣扎于输出作品的审美问题时,图文预训练模型的出现,加速了AI绘画的崛起。

  “依托图文预训练模型,只要输入一句话或者上传一幅风格明显的图片,算法就能将图像特征和文字特征‘对齐’。生成的绘画作品的内容特征和上传图片的内容相似,艺术性也比图像风格迁移技术生成的图片强很多。”董未名举例,比如支撑图文预训练模型的可对比语言—图像预训练(CLIP)算法,就是利用图文特征“对齐”的能力,再结合已有的生成模型,实现“以图生图”或者“图+文”生图。

  不过,董未名坦言,图文预训练模型的推广也存在一些争议,有部分人认为,该模型在训练前期,需要用大量的图形处理器(GPU)进行数据训练,耗电量大、成本很高,而该模型的应用场景却不够清晰。但也有人认为,也许该模型未来可以打造为通用的人工智能模型,用它完成更多的算法作业,只是这还需要时间的验证。

  诚然没有一项技术是完美的,这也为人类探究更先进的技术提供了无限动力。当下最流行的扩散模型便是其中之一。

  “目前最新的AI绘画技术采用的就是扩散模型,这种模型可以把一个随机采样的噪声输入模型,然后尝试通过去噪来生成图像。”董未名表示,扩散模型也存在弱点,由于模型对图片内容识别的能力不足,或者难以完全理解识别文字的意义,以及训练数据的偏差,有时便会生成“四不像”的作品。此外,扩散模型生成图片的速度比较慢,目前还达不到实时生成图片。

  互联网治理、元宇宙或潜藏应用前景

  AI绘画目前的应用场景,更多聚焦于社交软件。近期在国内社交网络“火出天际”的AI绘画软件主要集中在小程序及App。随着AI绘画小程序的火爆,短视频平台抖音也迅速上线了AI绘画特效。同时,此前腾讯上线了“QQ小世界AI画匠”活动,百度也推出了首款AI艺术和创意辅助平台“文心一格”。

  有了AI,人人都可以是艺术家。AI绘画的出现,恰如瑞士艺术家保罗·克利所言:“艺术不是再现可见,而是使不可见成为可见。”“AI现在已经完美实现了这一目标,人们可以通过机器计算来绘制出很多现实中见不到的场景。”董未名畅想,不远的将来,AI绘画或许还将展现更丰富的应用场景。

  “现在网络上充斥着很多不良内容,这些内容为了逃避监管经常以绘画的形式出现,而当前很多内容识别模型对真实图片识别得很准确,但缺乏不良内容艺术作品的相关训练数据,所以对不良内容识别不准确。也许可以用AI绘画技术,积累不良内容艺术作品的数据,并用以训练识别模型,以提升互联网内容的安全监管能力和识别的准确率。”董未名建议。

  在董未名看来,作为一种艺术呈现形式,AI绘画也将在元宇宙、设计、文旅等行业催生新的商业模式。例如AI绘画目前在AI辅助创作、短视频、影视制作和元宇宙等方面都有布局,因为这些赛道都离不开创意,AI绘画可以帮助创作者通过简单的特征输入,实现对其创意的预览,甚至可以直接进行创作。

  不过,董未名并不讳言,当下AI绘画仍然存在版权争议问题。AI绘画的核心是模型,而训练模型需要使用大量图像、文本数据。对于未经授权的图片,经过运算之后所生成的图像版权归属尚难界定。“有的画家风格特别明显,如果用画家的画去训练算法模型生成作品,那最后的版权属于谁呢?”董未名提出的问题,正是多数AI绘画作品所面临的现实问题。

  AI绘画掀起了一场资本的群体狂欢,希望有一天它能走出“照猫画虎”的尴尬,真正服务艺术创作、创造更多价值。(科技日报记者 金凤)

网信彩票投注

【动画】带你了解,何为网络安全“攻击面管理”******

  【2022年国家网络宣传周系列科普】

  近年来,新兴技术迅速发展带动了网络资产边界快速拓展,也增加了企业资产暴露面,而基于供应链的新型攻击则大大降低了攻击成本。在多重因素的驱动下,网络安全防御策略也在与时俱进,攻击面管理也开始被行业所关注。让我们一起了解一下攻击面管理的小知识吧。

  什么是攻击面?

  近日发布的《中国攻击面管理市场研究报告》(以下简称研究报告)指出,攻击面是指未经授权即能访问和利用企业数字资产的所有潜在入口的总和。

  其中,包括未经授权的可访问的硬件、软件、云资产和数据资产等,同样也包括人员管理、技术管理、业务流程存在的安全弱点和缺陷等,即存在可能会被攻击者利用并造成损失的潜在风险。

  但不是所有资产暴露面都可以成为攻击面,只有可利用暴露面叠加攻击向量才形成了攻击面。

【动画】带你了解,何为网络安全“攻击面管理”

  什么是攻击面管理?

  攻击面管理是一种从攻击者的角度对企业数字资产攻击面进行检测发现、分析研判、情报预警、响应处置和持续监控的资产安全性管理方法,其最大特性就是以外部攻击者视角来审视企业所有资产可被利用的攻击可能性。

  主要包含外部攻击面管理(EASM)、网络资产攻击面管理(CAASM)、数字风险保护服务(DRPS)等内容。

【动画】带你了解,何为网络安全“攻击面管理”

  什么是攻击面管理框架体系?

  攻击面管理框架体系自下向上分别为基础技术、安全能力和应用场景。基础技术为支撑攻击面管理的技术能力集合,多种技术组合形成攻击面管理的能力体系,根据不同的业务场景需求采用不同的能力组合,形成不同的应用场景下的攻击面管理解决方案,为用户提供有针对性的攻击面闭环管理能力。

【动画】带你了解,何为网络安全“攻击面管理”

  什么是攻击面管理成熟度模型?

  研究报告中还提到了建立攻击面管理的成熟度模型,主要是工具阶段的被动防御、平台阶段的主动防御、流程化阶段的对抗防御、先知阶段的优先防御四个层级;提出了暴露面获取、脆弱点发现、攻击面挖掘、情报获取能力等攻击面管理要具备的12个能力域,从检测发现、分析研判、情报预警、响应运营的闭环管控过程分解了响应的29个能力子项,从子能力的具备和完善情况来评价攻击面管理的有效性。

  发展前景怎么看?

  目前,国内外厂商如华云安、360政企安全、Mandiant、CyCoginito、等一大批传统网络安全团队,正在进入攻击面管理创新领域。未来攻击面管理将从传统场景扩展到新兴技术场景,并提供跨领域、跨技术平台的数字资产及其攻击面管理能力,更关注企业内部业务风险和第三方风险的管理,为用户提供统一的攻击面管理入口,并提供一致的安全运营体验。

  光明网、华云安 联合出品

  监制:张宁、李政葳策划:孔繁鑫制作/配音:雷渺鑫

中国网客户端

国家重点新闻网站,9语种权威发布

网信彩票地图